Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Resonance enhanced large third order nonlinear optical response in slow light GaInP photonic-crystal waveguides.

Identifieur interne : 001778 ( Main/Exploration ); précédent : 001777; suivant : 001779

Resonance enhanced large third order nonlinear optical response in slow light GaInP photonic-crystal waveguides.

Auteurs : RBID : pubmed:20389591

English descriptors

Abstract

We report a large nonlinear response in a 1.3mm long GaInP photonic crystal waveguide. The wide band gap of GaInP (1.9 eV) ensures that no two photon absorption takes place for photons at 1.55mm improving the nonlinear performance. The nonlinearity is enhanced by a resonance effect due to the waveguide end facet reflectivities as well as by the low group velocity exhibited by the waveguide. A low CW input pump power of approximately 2mW causes a very large change in the nonlinear refractive index coefficient which manifests itself in a large, approximately p /3 phase shift in the Fabry Perot fringes. The extracted effective nonlinear coefficient g varies from 3.4 x 105W-1m-1 at short wavelengths to 2.2 x 106W-1m-1 near the band edge. These values are several orders of magnitude larger than those obtained in reported nonlinear experiments which exploit the Kerr effect. We postulate therefore that the observed nonlinearity is due to a hybrid phenomenon which combines the Kerr effect and an index change which is induced by local heating that results from the residual linear absorption. The efficient nonlinear phase shift was also exploited in a fast dynamic experiment where we demonstrated wavelength conversion with 100ps wide pulses proving the potential for switching functionalities at multi GHz rates. The index change required for this switching experiment can not be obtained, at the power levels used here, with a g value of a few thousands W-1m-1 which is a typical Kerr coefficient in similar waveguides. Hence, we conclude that the hybrid nonlinearity is sufficiently fast to enable switching with a time scale of at least 100ps.

PubMed: 20389591

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Resonance enhanced large third order nonlinear optical response in slow light GaInP photonic-crystal waveguides.</title>
<author>
<name sortKey="Cestier, I" uniqKey="Cestier I">I Cestier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Electrical Engineering Department, Technion, Haifa, 32000, Israel. cestier@tx.technion.ac.il</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Electrical Engineering Department, Technion, Haifa, 32000</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Eckhouse, V" uniqKey="Eckhouse V">V Eckhouse</name>
</author>
<author>
<name sortKey="Eisenstein, G" uniqKey="Eisenstein G">G Eisenstein</name>
</author>
<author>
<name sortKey="Combrie, S" uniqKey="Combrie S">S Combrié</name>
</author>
<author>
<name sortKey="Colman, P" uniqKey="Colman P">P Colman</name>
</author>
<author>
<name sortKey="De Rossi, A" uniqKey="De Rossi A">A De Rossi</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20389591</idno>
<idno type="pmid">20389591</idno>
<idno type="wicri:Area/Main/Corpus">001970</idno>
<idno type="wicri:Area/Main/Curation">001970</idno>
<idno type="wicri:Area/Main/Exploration">001778</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Equipment Design</term>
<term>Equipment Failure Analysis</term>
<term>Gallium (chemistry)</term>
<term>Indium (chemistry)</term>
<term>Light</term>
<term>Nonlinear Dynamics</term>
<term>Phosphines (chemistry)</term>
<term>Refractometry (instrumentation)</term>
<term>Scattering, Radiation</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Gallium</term>
<term>Indium</term>
<term>Phosphines</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Refractometry</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Equipment Design</term>
<term>Equipment Failure Analysis</term>
<term>Light</term>
<term>Nonlinear Dynamics</term>
<term>Scattering, Radiation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report a large nonlinear response in a 1.3mm long GaInP photonic crystal waveguide. The wide band gap of GaInP (1.9 eV) ensures that no two photon absorption takes place for photons at 1.55mm improving the nonlinear performance. The nonlinearity is enhanced by a resonance effect due to the waveguide end facet reflectivities as well as by the low group velocity exhibited by the waveguide. A low CW input pump power of approximately 2mW causes a very large change in the nonlinear refractive index coefficient which manifests itself in a large, approximately p /3 phase shift in the Fabry Perot fringes. The extracted effective nonlinear coefficient g varies from 3.4 x 105W-1m-1 at short wavelengths to 2.2 x 106W-1m-1 near the band edge. These values are several orders of magnitude larger than those obtained in reported nonlinear experiments which exploit the Kerr effect. We postulate therefore that the observed nonlinearity is due to a hybrid phenomenon which combines the Kerr effect and an index change which is induced by local heating that results from the residual linear absorption. The efficient nonlinear phase shift was also exploited in a fast dynamic experiment where we demonstrated wavelength conversion with 100ps wide pulses proving the potential for switching functionalities at multi GHz rates. The index change required for this switching experiment can not be obtained, at the power levels used here, with a g value of a few thousands W-1m-1 which is a typical Kerr coefficient in similar waveguides. Hence, we conclude that the hybrid nonlinearity is sufficiently fast to enable switching with a time scale of at least 100ps.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">20389591</PMID>
<DateCreated>
<Year>2010</Year>
<Month>04</Month>
<Day>14</Day>
</DateCreated>
<DateCompleted>
<Year>2010</Year>
<Month>07</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1094-4087</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2010</Year>
<Month>Mar</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Optics express</Title>
<ISOAbbreviation>Opt Express</ISOAbbreviation>
</Journal>
<ArticleTitle>Resonance enhanced large third order nonlinear optical response in slow light GaInP photonic-crystal waveguides.</ArticleTitle>
<Pagination>
<MedlinePgn>5746-53</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1364/OE.18.005746</ELocationID>
<Abstract>
<AbstractText>We report a large nonlinear response in a 1.3mm long GaInP photonic crystal waveguide. The wide band gap of GaInP (1.9 eV) ensures that no two photon absorption takes place for photons at 1.55mm improving the nonlinear performance. The nonlinearity is enhanced by a resonance effect due to the waveguide end facet reflectivities as well as by the low group velocity exhibited by the waveguide. A low CW input pump power of approximately 2mW causes a very large change in the nonlinear refractive index coefficient which manifests itself in a large, approximately p /3 phase shift in the Fabry Perot fringes. The extracted effective nonlinear coefficient g varies from 3.4 x 105W-1m-1 at short wavelengths to 2.2 x 106W-1m-1 near the band edge. These values are several orders of magnitude larger than those obtained in reported nonlinear experiments which exploit the Kerr effect. We postulate therefore that the observed nonlinearity is due to a hybrid phenomenon which combines the Kerr effect and an index change which is induced by local heating that results from the residual linear absorption. The efficient nonlinear phase shift was also exploited in a fast dynamic experiment where we demonstrated wavelength conversion with 100ps wide pulses proving the potential for switching functionalities at multi GHz rates. The index change required for this switching experiment can not be obtained, at the power levels used here, with a g value of a few thousands W-1m-1 which is a typical Kerr coefficient in similar waveguides. Hence, we conclude that the hybrid nonlinearity is sufficiently fast to enable switching with a time scale of at least 100ps.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cestier</LastName>
<ForeName>I</ForeName>
<Initials>I</Initials>
<Affiliation>Electrical Engineering Department, Technion, Haifa, 32000, Israel. cestier@tx.technion.ac.il</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Eckhouse</LastName>
<ForeName>V</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Eisenstein</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Combrié</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Colman</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>De Rossi</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Opt Express</MedlineTA>
<NlmUniqueID>101137103</NlmUniqueID>
<ISSNLinking>1094-4087</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Phosphines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>045A6V3VFX</RegistryNumber>
<NameOfSubstance>Indium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>12063-98-8</RegistryNumber>
<NameOfSubstance>gallium phosphide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>22398-80-7</RegistryNumber>
<NameOfSubstance>indium phosphide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>CH46OC8YV4</RegistryNumber>
<NameOfSubstance>Gallium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Equipment Failure Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Gallium</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Indium</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Nonlinear Dynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Phosphines</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Refractometry</DescriptorName>
<QualifierName MajorTopicYN="Y">instrumentation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Scattering, Radiation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">196455</ArticleId>
<ArticleId IdType="pubmed">20389591</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001778 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001778 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20389591
   |texte=   Resonance enhanced large third order nonlinear optical response in slow light GaInP photonic-crystal waveguides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20389591" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024